Abstract

A novel frequency-sampling method for designing zero-phase FIR filters from nonuniform samples is presented. The method is fast, simple, recursive and can be used in the design of 1D or 2D zero-phase FIR filters by imposing some mild constraints on sample locations in the 2D frequency plane. Based on a novel Newton representation of the filter transfer function the proposed method guarantees real results, saves a number of operations and produces accurate solutions even in cases of designing high-order filters or when the interpolation matrix is ill-conditioned. In the progressive case when the next sample appears, the design parameters are evaluated by updating the old ones with correction terms that could be used as indicators for convergence, approximation, or filter reduction. The method can be used in mD filter design, in LU-factorization or in inversion of cosine matrices. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.