Abstract
While teaching a course in probability and statistics, one of the authors came across an apparently simple question about the computation of higher order moments of a random variable. The topic of moments of higher order is rarely emphasized when teaching a statistics course. The textbooks we came across in our classes, for example, treat this subject rather scarcely; see [3, pp. 265–267], [4, pp. 184–187], also [2, p. 206]. Most of the examples given in these books stop at the second moment, which of course suffices if one is only interested in finding, say, the dispersion (or variance) of a random variable X , D2(X) = M2(X)− M(X)2. Nevertheless, moments of order higher than 2 are relevant in many classical statistical tests when one assumes conditions of normality. These assumptions may be checked by examining the skewness or kurtosis of a probability distribution function. The skewness, or the first shape parameter, corresponds to the the third moment about the mean. It describes the symmetry of the tails of a probability distribution. The kurtosis, also known as the second shape parameter, corresponds to the fourth moment about the mean and measures the relative peakedness or flatness of a distribution. Significant skewness or kurtosis indicates that the data is not normal. However, we arrived at higher order moments unintentionally. The discussion that follows is the outcome of a question raised by our students without knowing much about the motivation for studying moments of higher order. It has to do with discrete random variables
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.