Abstract

Early forecasting of COVID-19 virus spread is crucial to decision making on lockdown or closure of cities, states or countries. In this paper we design a recursive bifurcation model for analyzing COVID-19 virus spread in different countries. The bifurcation facilitates recursive processing of infected population through linear least-squares fitting. In addition, a nonlinear least-squares fitting procedure is utilized to predict the future values of infected populations. Numerical results on the data from two countries (South Korea and Germany) indicate the effectiveness of our approach, compared to a logistic growth model and a Richards model in the context of early forecast. The limitation of our approach and future research are also mentioned at the end of this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.