Abstract

Engineers have witnessed much advancement in the study of fatigue crack detection and propagation modeling. More recently, the use of certain damage precursors such as acoustic emission signals to assess the integrity of structures has been proposed for application to prognosis and health management of structures. However, due to uncertainties associated with small crack detection of damage precursors and crack size measurement errors of the detection technology used, applications of prognosis and health management assessments have been limited. In this article, a methodology is developed for the purpose of assessment of crack detection and propagation parameters and the minimization of uncertainties including detection and sizing errors associated with a series of known crack detection and propagation models that use acoustic emission as the precursor to fatigue cracking. The methodology is facilitated by the Bayesian inference of a joint-likelihood model which includes sizing and detection models. Examples where several dog-bone Al 7075T6 specimens are tested to produce fatigue crack initiation and propagation data and estimates based on remaining useful life support the effectiveness and usefulness of the proposed methodology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.