Abstract
Recently, link prediction techniques have been increasingly adopted to discover link patterns in various domains. On challenging problem is to improve the performance continually. In this paper, we propose a recursive prediction mechanism to addresses the link prediction problem. A posterior is calculated based on observed data, and then we estimate the state of the graph and use the posterior as the prior distribution for the next stage. With the increasing of iterations, the proposed approach incorporates more and more topological structure information and node attributes data. Experimental results with real-world networks have shown that the proposed solution performs better in terms of well-known metrics as compared to the existing approaches. This novel approach has already been integrated into an expert system and provides auxiliary support for decision-makers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.