Abstract

A circular connected-(r, s)-out-of-(m, n):F lattice system consists of m × n components arranged in a cylindrical grid. Each of m circles has n components, and this system fails if and only if there exists a grid of size r × s which all components are failed. A circular connected-(r, s)-out-of-(m, n):F lattice system might be used in reliability models for 'Feelers for measuring temperature on reaction chamber' and 'TFT Liquid Crystal Display system with 360° wide area'.In this study, we proposed a new recursive algorithm for obtaining the reliability of a circular connected-(r, s)- out-of-(m, n):F lattice system. We evaluated our proposed algorithms in terms of computing time and memory capacity. Furthermore, a numerical experiment comparing our proposed algorithm with Yamamoto and Miyakawa's algorithm [Yamamoto, H., & Miyakawa, M. (1996). Reliability of circular connected-(r, s)-out-of-(m, n):F lattice system. Journal of the Operations Research Society of Japan, 39(3), 389-406] showed that our proposed algorithm is more effective for systems with a large n.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.