Abstract

An artificial Neural Network (NNW) is designed to serve as a surrogate model of micro-scale simulations in the context of multi-scale analyses in solid mechanics.The design and training methodologies of the NNW are developed in order to allow accounting for history-dependent material behaviors. On the one hand, a Recurrent Neural Network (RNN) using a Gated Recurrent Unit (GRU) is constructed, which allows mimicking the internal variables required to account for history-dependent behaviors since the RNN is self-equipped with hidden variables that have the ability of tracking loading history. On the other hand, in order to achieve accuracy under multi-dimensional non-proportional loading conditions, training of the RNN is achieved using sequential data. In particular the sequential training data are collected from finite element simulations on an elasto-plastic composite RVE subjected to random loading paths. The random loading paths are generated in a way similar to a random walking in stochastic process and allow generating data for a wide range of strain-stress states and state evolution.The accuracy and efficiency of the RNN-based surrogate model is tested on the structural analysis of an open-hole sample subjected to several loading/unloading cycles. It is shown that a similar accuracy as with a FE2 multi-scale simulation can be reached with the RNN-based surrogate model as long as the local strain state remains in the training range, while the computational time is reduced by four orders of magnitude.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.