Abstract
In this paper, we propose a penalty-based recurrent neural network for solving a class of constrained optimization problems with generalized convex objective functions. The model has a simple structure described by using a differential inclusion. It is also applicable for any nonsmooth optimization problem with affine equality and convex inequality constraints, provided that the objective function is regular and pseudoconvex on feasible region of the problem. It is proven herein that the state vector of the proposed neural network globally converges to and stays thereafter in the feasible region in finite time, and converges to the optimal solution set of the problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.