Abstract

Temperature control by a Takagi-Sugeno-Kang (TSK)-type recurrent fuzzy network (TRFN) designed by modeling plant inverse is proposed in this paper. TRFN is a recurrent fuzzy network developed from a series of TSK-type fuzzy if--then rules, and is characterized by structure and parameter learning. In parameter learning, two types of learning algorithms, the Kalman filter and the gradient descent learning algorithms, are applied to consequent parameters depending on the learning situation. The TRFN has the following advantages when applied to temperature control problems: 1) high learning ability, which considerably reduces the controller training time; 2) no a priori knowledge of the plant order is required, which eases the design process; 3) good and robust control performance; 4) online learning ability, i.e., the TRFN can adapt itself to unpredictable plant changes. The TRFN-based direct inverse control configuration is applied to a real water bath temperature control plant, where various control conditions are experimented. The same experiments are also performed by proportional-integral (PI), fuzzy, and neural network controllers. From comparisons, the aforementioned advantages of a TRFN have been verified

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call