Abstract

Abstract Human Ig heavy chain constant regions are encoded by a cluster of genes, the IGHC locus, on 14q32.3. Several forms of IGHC deletions and duplications spanning one to five genes have been described in different populations, with frequencies of 1.5–3.5% and 4.5–44%, respectively. Despite the common occurrence of these gene rearrangements, little is known about the breakpoint sites; evidence obtained from deletions in the IGHC locus and in other regions of the human genome suggests that they preferentially occur in highly homologous regions and might be favored by a variety of recombinogenic signals. We present here a detailed study of three homozygotes for the most common type of IGHC multiple gene deletion, spanning the A1-GP-G2-G4-E genes. Using a combination of Southern blotting, long-range PCR, and automated sequencing, the unequal crossover events of all of the six studied haplotypes have been mapped to a region of ∼2 kb with almost complete homology between EP1-A1 and E-A2, flanked by two minisatellites. These results are consistent with the hypothesis that segments of complete homology may be required for efficient homologous recombination in humans. The possible role of minisatellites as recombination signals is inferred, in agreement with current knowledge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.