Abstract
Motivated by the study of singular values of random rectangular matrices, we define and study the rectangular additive convolution of polynomials with nonnegative real roots. Our definition directly generalizes the asymmetric additive convolution introduced by Marcus, Spielman and Srivastava (2015), and our main theorem gives the corresponding generalization of the bound on the largest root from that paper. The main tool used in the analysis is a differential operator derived from the "rectangular Cauchy transform" introduced by Benaych-Georges (2009). The proof is inductive, with the base case requiring a new nonasymptotic bound on the Cauchy transform of Gegenbauer polynomials which may be of independent interest.Mathematics Subject Classifications: 26C10, 33C45
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.