Abstract

This paper deals with the one-machine dynamic total completion time scheduling problem. This problem is known to be NP-hard in the strong sense. A polynomial time heuristic algorithm is proposed which applies the recently introduced Recovering Beam Search (RBS) approach. The algorithm is based on a beam search procedure with unitary beam width and includes a recovering subroutine that allows to overcome wrong decisions taken at higher levels of the beam search tree. It is shown that the total number of considered nodes is bounded by n where n is the jobsize. The proposed algorithm is able to solve in very short CPU time problems with up to 500 jobs outperforming the best state of the art heuristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.