Abstract

Transcranial magnetic stimulation is an attractive research and possibly therapeutic tool for non-invasive stimulation of brain tissue. However, relatively little is known about the direction, magnitude and distribution of induced fields and current flow in tissue, and optimal setup characteristics remain largely undetermined. Further, the profound influence of brain size and shape as well as of brain tissue irregularity on actual stimulation patterns is unclear. We model the conductive phenomena induced in brain tissue by TMS by solving the quasistatic problem over a realistic head model of 1 mm resolution derived from anatomical MRI scans using a finite difference successive overrelaxation procedure. The magnetic field is calculated from digitized coil geometry and realistic stimulator parameters. Stimulation with a symmetrical primary electric field results in electric field and current density distributions which are highly asymmetrical both in magnitude and in direction (i.e. distributed, non-contiguous stimulation peaks, deviation of stimulated area from coil “hot spot”, sudden jumps in stimulation intensity and non-zero current flow across tissue interfaces). Knowledge of coil and stimulator specifications alone is hence not sufficient to control stimulation conditions, and a stereotaxic setup coupled with an individually adjusted field solver appears essential in performing reliable TMS studies. Our results bear direct relevance to any application of TMS, both investigative and therapeutic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.