Abstract

Low-frequency and broadband are the critical challenges in real-life applications. Here, we try to tackle the challenges by proposing a reconfigurable acoustic metasurface (AM) composed of the membrane-type metamaterial (MAM) structure of deep sub-wavelength scale. By employing the external air pumping system into each individual unit cell of the AM, the tension of the membrane can be readily tailored by the system with little interference from other unit cells. Two strategies of the constant pressure method (CPM) and constant volume method (CVM) are reported to design the MAM. And the CVM is adopted as the ultimate design strategy by comparing both methods from aspects of the dimension, operating frequency, and structure complexity. In order to validate the low-frequency and broadband performances of the AM, the Airy-like beams and the acoustic converging based on two identical Airy-like beams are introduced and proof-of-concept simulations are performed with the finite element method. The simulated results agree well with the theoretical predictions. Our design provides the little-interference active design method for the low-frequency and broadband AM to manipulate the wave front, and may have practical engineering applications in areas of the aerospace, high-speed train, marine vessel, and power transmission and transformation project.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.