Abstract
Evolvable hardware is a system that modifies its architecture and behavior to adapt with changes of the environment. It is formed by reconfigurable processing elements driven by an evolutionary algorithm. In this paper, we study a reconfigurable HexCell-based systolic array architecture for evolvable systems on FPGA. HexCell is a processing element with a tile-able hexagonal-shaped cell for reconfigurable systolic arrays on FPGAs. The cell has three input ports feed into an internal functional-unit connected to three output ports. The functional-unit is configured using dynamic partial reconfiguration (DPR), and the output ports, in contrast, are configured using virtual reconfiguration circuit (VRC). Our proposed architecture combines the merits of both DPR and VRC to achieve fast reconfiguration and accelerated evolution. A HexCell-based 4 × 4 array was implemented on FPGA and utilized 32.5% look-up tables, 31.3% registers, and 1.4% block RAMs of Artix-7 (XC7Z020) while same-size conventional array consumed 8.7%, 5.1%, and 20.7% of the same FPGA, respectively. As a case study, we used an adaptive image filter as a test application. Results showed that the fitness of the best filters generated by our proposed architecture were generally fitter than those generated by the conventional state-of-the-art systolic array on the selected application. Also, performing 900,000 evaluations on HexCell array was 2.6 × faster than the conventional one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.