Abstract

Artificial Neural Networks (ANNs) is a well known bio-inspired model that simulates human brain capabilities such as learning and generalization. ANNs consist of a number of interconnected processing units, wherein each unit performs a weighted sum followed by the evaluation of a given activation function. The involved computation has a tremendous impact on the implementation efficiency. Existing hardware implementations of ANNs attempt to speed up the computational process. However these implementations require a huge silicon area that makes it almost impossible to fit within the resources available on a state-of-the-art FPGAs. In this chapter, we devise a hardware architecture for ANNs that takes advantage of the dedicated adder blocks, commonly called MACs to compute both the weighted sum and the activation function. The proposed architecture requires a reduced silicon area considering the fact that theMACs come for free as these are FPGA’s builtin cores. The hardware is as fast as existing ones as it is massively parallel. Besides, the proposed hardware can adjust itself on-the-fly to the user-defined topology of the neural network, with no extra configuration, which is a very nice characteristic in robot-like systems considering the possibility of the same hardware may be exploited in different tasks.KeywordsNeural NetworkOutput FunctionHardware ArchitectureSilicon AreaStochastic Neural NetworkThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.