Abstract
AbstractDNA nanostructure‐based mechanical systems that control the distance between elements of interest have demonstrated great potential for various applications, including nanoplasmonic systems, molecular reactors, and other nanotechnology platforms. However, previously reported systems could not collectively manipulate a 2D or 3D nanoscale network of elements to various forms in multiple stages. A reconfigurable DNA accordion rack structure is introduced that is a DNA beam lattice that changes its conformation with a small amount of short‐length DNA locks as the controlling input. The lattice shape of the 2D DNA accordion rack and the diameter and the height of the 3D DNA nanotubular structure made of the DNA accordion rack could be controlled. Furthermore, by sequentially repeating the detachment and the attachment of the different DNA locks using strand displacement, the shape reconfiguration was repeatedly carried out.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.