Abstract

Discrete cosine transform (DCT) is an indispensable module in video codecs and is a major part in many video coding standards including the latest high efficiency video coding (HEVC). As the video resolution increases, both transform sizes and the number of transforms increase continuously which poses challenges to the reusability design especially in hardware implementation. This paper presents reconfigurable transform architecture to flexibly support the reusability of different transform sizes. The proposed architecture maximally reuses the hardware resources by rearranging the order of input data for different transform sizes while still exploiting the butterfly property. Furthermore, this architecture supports reconfigurable throughput according to different hardware resource requirements. By applying the proposed architecture to the field-programmable gate array (FPGA) design of HEVC core transform matrices, the synthesis results show much lower consumption of hardware resources comparing to existing methods in the literature. The implementation in Altera's Stratix III FPGA can operate at 139 MHz and supports real-time processing of 3840×2160 ultrahigh definition video at a minimum of 45 f/s and up to 359 f/s for different DCT sizes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.