Abstract

This article presents a reconfigurable hardware/software architecture for binary acceleration of embedded applications. A Reconfigurable Processing Unit (RPU) is used as a coprocessor of the General Purpose Processor (GPP) to accelerate the execution of repetitive instruction sequences called Megablocks . A toolchain detects Megablocks from instruction traces and generates customized RPU implementations. The implementation of Megablocks with memory accesses uses a memory-sharing mechanism to support concurrent accesses to the entire address space of the GPP’s data memory. The scheduling of load/store operations and memory access handling have been optimized to minimize the latency introduced by memory accesses. The system is able to dynamically switch the execution between the GPP and the RPU when executing the original binaries of the input application. Our proof-of-concept prototype achieved geometric mean speedups of 1.60× and 1.18× for, respectively, a set of 37 benchmarks and a subset considering the 9 most complex benchmarks. With respect to a previous version of our approach, we achieved geometric mean speedup improvements from 1.22 to 1.53 for the 10 benchmarks previously used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.