Abstract

Retina-inspired visual sensors play a crucial role in the realization of neuromorphic visual systems. Nevertheless, significant obstacles persist in the pursuit of achieving bidirectional synaptic behavior and attaining high performance in the context of photostimulation. In this study, we propose a reconfigurable all-optical controlled synaptic device based on the IGZO/SnO/SnS heterostructure, which integrates sensing, storage and processing functions. Relying on the simple heterojunction stack structure and the role of energy band engineering, synaptic excitatory and inhibitory behaviors can be observed under the light stimulation of ultraviolet (266 nm) and visible light (405, 520 and 658 nm) without additional voltage modulation. In particular, junction field-effect transistors based on the IGZO/SnO/SnS heterostructure were fabricated to elucidate the underlying bidirectional photoresponse mechanism. In addition to optical signal processing, an artificial neural network simulator based on the optoelectrical synapse was trained and recognized handwritten numerals with a recognition rate of 91%. Furthermore, we prepared an 8 × 8 optoelectrical synaptic array and successfully demonstrated the process of perception and memory for image recognition in the human brain, as well as simulated the situation of damage to the retina by ultraviolet light. This work provides an effective strategy for the development of high-performance all-optical controlled optoelectronic synapses and a practical approach to the design of multifunctional artificial neural vision systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.