Abstract

We propose a new method to improve median plane sound localization performance using a nonlinear representation of head-related transfer functions (HRTFs) and a recommender system. First, we reduce the dimensionality of an HRTF data set with multiple subjects using manifold learning in conjunction with a customized intersubject graph which takes into account relevant prior knowledge of HRTFs. Then, we use a sound localization model to estimate a subject’s localization performance in terms of polar error and quadrant error rate. These metrics are merged to form a single rating per HRTF pair that we feed into a recommender system. Finally, the recommender system takes the low-dimensional HRTF representation as well as the ratings obtained from the localization model to predict the best HRTF set, possibly constructed by mixing HRTFs from different individuals, that minimizes a subject’s localization error. The simulation results show that our method is capable of choosing a set of HRTFs that improves the median plane localization performance with respect to the mean localization performance using non-individualized HRTFs. Moreover, the localization performance achieved by our HRTF recommender system shows no significant difference to the localization performance observed with the best matching non-individualized HRTFs but with the advantage of not having to perform listening tests with all individuals’ HRTFs from the database.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.