Abstract
Almost unlimited access to educational information plethora came with a drawback: finding meaningful material is not a straightforward task anymore. Based on a survey related to how students find additional bibliographical resources for university courses, we concluded there is a strong need for recommended learning materials, for specialized online search and for personalized learning tools. As a result, we developed an educational collaborative filtering recommender agent, with an integrated learning style finder. The agent produces two types of recommendations: suggestions and shortcuts for learning materials and learning tools, helping the learner to better navigate through educational resources. Shortcuts are created taking into account only the user’s profile, while suggestions are created using the choices made by the learners with similar learning styles. The learning style finder assigns to each user a profile model, taking into account an index of learning styles, as well as patterns discovered in the virtual behavior of the user. The current study presents the agent itself, as well as its integration to a virtual collaborative learning environment and its success and limitations, based on users’ feedback.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.