Abstract

There is an urgent need to discover new active drugs to combat methicillin-resistant Staphylococcus aureus, which is a serious threat to humans and animals and incompletely eliminated by antibiotics due to its intracellular accumulation in host cells, production of biofilms, and persisters. Fungal defensin-like peptides (DLPs) are emerging as a potential source of new antibacterial drugs due to their potent antibacterial activity. In this study, nine novel fungal DLPs were firstly identified by querying against UniProt databases and expressed in Pichia pastoris, and their antibacterial and anti-biofilm ability were tested against multidrug-resistant (MDR)S. aureus. Results showed that among them, P2, the highest activity and expression level, showed low toxicity, no resistance, and high stability. Minimal inhibitory concentrations (MICs) of P2 against Gram-positive bacteria were < 2μg/mL. P2 exhibited the potent activity against intracellular MDR S. aureus (bacterial reduction in 80-97%) in RAW264.7 macrophages. P2 bound to/disrupted bacterial DNA, wrinkled outer membranes and permeabilized cytoplasmic membranes, but maintained the integrity of bacterial cells. P2 inhibited/eradicated the biofilm and killed 99% persister bacteria, which were resistant to 100× MIC vancomycin. P2 upregulated the anti-inflammatory cytokine (IL-10) and downregulated pro-inflammatory cytokines (TNF-α/IL-1β) and chemokine (MCP-1) levels in RAW 264.7 macrophages and in mice, respectively. Five milligram per kilogram P2 enhanced the survival of S. aureus-infected mice (100%), superior to vancomycin (30mg/kg), inhibited the bacterial translocation, and alleviated multiple-organ injuries (liver, spleen, kidney, and lung). These data suggest that P2 may be a candidate for novel antimicrobial agents against MDR staphylococcal infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.