Abstract

X and Y chromosomes can diverge when rearrangements block recombination between them. Here we present the first genomic view of a reciprocal translocation that causes two physically unconnected pairs of chromosomes to be coinherited as sex chromosomes. In a population of the common frog (Rana temporaria), both pairs of X and Y chromosomes show extensive sequence differentiation, but not degeneration of the Y chromosomes. A new method based on gene trees shows both chromosomes are sex-linked. Furthermore, the gene trees from the two Y chromosomes have identical topologies, showing they have been coinherited since the reciprocal translocation occurred. Reciprocal translocations can thus reshape sex linkage on a much greater scale compared with inversions, the type of rearrangement that is much better known in sex chromosome evolution, and they can greatly amplify the power of sexually antagonistic selection to drive genomic rearrangement. Two more populations show evidence of other rearrangements, suggesting that this species has unprecedented structural polymorphism in its sex chromosomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.