Abstract
AbstractWe study the Marangoni propulsion of a spheroidal particle located at a liquid–gas interface. The particle asymmetrically releases an insoluble surface-active agent and so creates and maintains a surface tension gradient leading to the self-propulsion. Assuming that the surface tension has a linear dependence on the concentration of the released agent, we derive closed-form expressions for the translational speed of the particle in the limit of small capillary, Péclet and Reynolds numbers. Our derivations are based on the Lorentz reciprocal theorem, which eliminates the need to develop the detailed flow field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.