Abstract

A major challenge in the development of rechargeable Li-O(2) batteries is the identification of electrolyte materials that are stable in the operating environment of the O(2) electrode. Straight-chain alkyl amides are one of the few classes of polar, aprotic solvents that resist chemical degradation in the O(2) electrode, but these solvents do not form a stable solid-electrolyte interphase (SEI) on the Li anode. The lack of a persistent SEI leads to rapid and sustained solvent decomposition in the presence of Li metal. In this work, we demonstrate for the first time successful cycling of a Li anode in the presence of the solvent, N,N-dimethylacetamide (DMA), by employing a salt, lithium nitrate (LiNO(3)), that stabilizes the SEI. A Li-O(2) cell containing this electrolyte composition is shown to cycle for more than 2000 h (>80 cycles) at a current density of 0.1 mA/cm(2) with a consistent charging profile, good capacity retention, and O(2) detected as the primary gaseous product formed during charging. The discovery of an electrolyte system that is compatible with both electrodes in a Li-O(2) cell may eliminate the need for protecting the anode with a ceramic membrane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.