Abstract

To gain insight regarding the mechanisms that extend heteroduplex joints in Escherichia coli recombination, we investigated the effect of recG and ruv genotypes on heteroduplex strand polarity in intramolecular recombination products. We also examined the cumulative effect of mutational inactivation of RecG and single-strand-specific exonucleases on recombination proficiency and the role of Chi sites in RecG-independent recombination. All four strands of the two homologs were incorporated into heteroduplex structures in wild-type cells and in ruv mutants. However, in recG mutants heteroduplexes were generated almost exclusively by pairing the invasive 3'-ending strand with its complementary strand. To explain the dependence of strand exchange reciprocity on RecG activity, we propose that alternative mechanisms may extend the heteroduplex joints after homologous pairing: a reciprocal RecG-mediated mechanism and a nonreciprocal mechanism, mediated by RecA and single-strand-specific exonucleases. The cumulative effect of recG and recJ or xonA mutations on recombination proficiency and the inhibitory effect of recJ and xonA activities on heteroduplex formation by the 5'-ending strands are consistent with this proposal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call