Abstract
The transcription factor Nrf2 plays a critical role in the organism-wide regulation of the antioxidant stress response. The Nrf2 homolog SKN-1 functions in the intestinal cells nonautonomously to negatively regulate neuromuscular junction (NMJ) function in Caenorhabditis elegans To identify additional molecules that mediate SKN-1 signaling to the NMJ, we performed a candidate screen for suppressors of aldicarb resistance caused by acute treatment with the SKN-1 activator arsenite. We identified two receptor tyrosine kinases, EGL-15 (fibroblast growth factor receptor, FGFR) and DAF-2 (insulin-like peptide receptor), that are required for NMJ regulation in response to stress. Through double-mutant analysis, we found that EGL-15 functions downstream of, or parallel to, SKN-1 and SPHK-1 (sphingosine kinase), and that the EGL-15 ligand EGL-17 FGF and canonical EGL-15 effectors are required for oxidative stress-mediated regulation of NMJ function. DAF-2 also functions downstream of or parallel to SKN-1 to regulate NMJ function. Through tissue-specific rescue experiments, we found that FGFR signaling functions primarily in the hypodermis, whereas insulin-like peptide receptor signaling is required in multiple tissues. Our results support the idea that the regulation of NMJ function by SKN-1 occurs via a complex organism-wide signaling network involving receptor tyrosine kinase signaling in multiple tissues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.