Abstract
Tsetse flies transmit trypanosomes that cause nagana in cattle, and sleeping sickness in humans. Therefore, optimising visual baits to control tsetse is an important priority. Tsetse are intercepted at visual baits due to their initial attraction to the bait, and their subsequent contact with it due to landing or accidental collision. Attraction is proposed to be driven in part by a chromatic mechanism to which a UV-blue photoreceptor contributes positively, and a UV and a green photoreceptor contribute negatively. Landing responses are elicited by stimuli with low luminance, but many studies also find apparently strong landing responses when stimuli have high UV reflectivity, which would imply that UV wavelengths contribute negatively to attraction at a distance, but positively to landing responses at close range. The strength of landing responses is often judged using the number of tsetse sampled at a cloth panel expressed as a proportion of the combined catch of the cloth panel and a flanking net that samples circling flies. I modelled these data from two previously published field studies, using calculated fly photoreceptor excitations as predictors. I found that the proportion of tsetse caught on the cloth panel increased with an index representing the chromatic mechanism driving attraction, as would be expected if the same mechanism underlay both long- and close-range attraction. However, the proportion of tsetse caught on the cloth panel also increased with excitation of the UV-sensitive R7p photoreceptor, in an apparently separate but interacting behavioural mechanism. This R7p-driven effect resembles the fly open-space response which is believed to underlie their dispersal towards areas of open sky. As such, the proportion of tsetse that contact a cloth panel likely reflects a combination of deliberate landings by potentially host-seeking tsetse, and accidental collisions by those seeking to disperse, with a separate visual mechanism underlying each behaviour.
Highlights
Tsetse flies (Glossina spp.) occur in sub-Saharan Africa and transmit the trypanosomes that cause nagana in cattle, and sleeping sickness in humans [1]
Visual baits are often panels of insecticide-treated cloth which tsetse must contact to become dosed with insecticide
I found that tsetse contacted visual baits due to two behavioural mechanisms: a comparison between the responses of several photoreceptors that underlies attraction and landing, and a UV photoreceptor-driven mechanism that likely drives dispersal towards open sky and causes tsetse to collide with visual baits accidentally
Summary
Tsetse flies (Glossina spp.) occur in sub-Saharan Africa and transmit the trypanosomes that cause nagana in cattle, and sleeping sickness (human African trypanosomiasis, HAT) in humans [1]. Effective odour cues for attracting riverine tsetse may yet be identified [4], but at present odourless, insecticide-treated cloth panels are advocated for the cost-effective control of these flies [2,5,6]. Understanding the visually-guided behaviours that draw tsetse to such baits can contribute to current efforts to optimise the cost and efficiency of control operations, and one factor that has received much attention is the role of colour [7,8,9,10]. E-cloths sample tsetse that land on the cloth bait, whilst e-nets are difficult for tsetse to detect and sample those flies that accidentally collide with them [11,12,13] This allows tsetse to be sampled when they contact a particular bait and when circling nearby, allowing sophisticated investigation of their behaviour A variety of interacting olfactory and visual cues can contribute to these behavioural processes (for reviews, [16,17]), but among them reflected light wavelength cues are both important, and relevant to the optimisation of the visual baits currently advocated for riverine tsetse control
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.