Abstract

The recent scientific progresses on the use of enzyme-mediated reactions in organic, non-aqueous and aqueous media have significantly supported the growing demand of new biotechnological and/or pharmacological products. Today, a plethora of microbial enzymes, used as biocatalysts, are available. Among these, microbial transglutaminases (MTGs) are broadly used for their ability to catalyse the formation of an isopeptide bond between the γ-amide group of glutamines and the ε-amino group of lysine. Due to their promiscuity towards primary amine-containing substrates and the more stringent specificity for glutamine-containing peptide sequences, several combined approaches can be tailored for different settings, making MTGs very attractive catalysts for generating protein-protein and protein small molecule's conjugates. The present review offers a recent update on the modifications attainable by MTG-catalysed bioreactions as reported between 2014 and 2019. In particular, we present a detailed and comparative overview on the MTG-based methods for proteins and antibodies engineering, with a particular outlook on the synthesis of homogeneous antibody-drug conjugates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.