Abstract

As populations grow, global energy consumption in the next 30 years is predicted to rise by nearly 50%. Nowadays and many years before, the most energy worldwide is provided by fossil fuel which leads to severe pollution and contributes to the greenhouse effect. Hydrogen is the most ideal alternative clean energy, but currently, there is no significant hydrogen production from renewable sources. Hence, there is an urgent need for the development of new photocatalysts which will allow a water splitting for hydrogen production.

Highlights

  • As populations grow, global energy demands together with their potential environmental impact are expected to increase even more in the coming years

  • Nowadays and many years before, the most energy worldwide is provided by fossil fuel which leads to severe pollution and contributes to the greenhouse effect

  • Some investigations show that introduction of Ti3+ atomic defects is beneficial for the photocatalytic water splitting for hydrogen generation

Read more

Summary

Introduction

Global energy demands together with their potential environmental impact are expected to increase even more in the coming years. In 2010, fossil fuels provided about 80% of all primary energy worldwide [2]. The combustion of fossil fuels lead to severe pollution and contributes to the greenhouse effect. Climate is a main driver for hydrogen in the energy transition. Limiting global warming to below 2 degrees Celsius (°C) requires that CO2 emissions decline by around 25% by 2030, from 2010 levels, and reach net zero by around 2070 (IPCC, 2018) [3]. For a reasonable likelihood to stay below 1.5 °C of warming, global net anthropogenic CO2 emissions should decline by around 45% by 2030, from 2010 levels, reaching net zero by around 2050 [3]

Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.