Abstract

With the continuous development of the diamond industry, the China-type cubic press (CCP) has gradually become larger. As a result, the volume of the tungsten carbide (WC) anvil has been increased. Considering that the WC anvil is sintered, a larger volume will deteriorate sintering quality, which could facilitate the formation of cracks during its operation. One feasible way to reduce the volume of the WC anvil is to decrease its diameter and height. Along these lines, in this work, by performing finite element simulations, it was found that a reduction in the diameter of the WC anvil would increase the von Mises stress (VMS) during the synthesis process, as well as reduce the service life of the WC anvil and the ultimate pressure of the CCP. At the same time, a smaller diameter of the WC anvil would cause a significant increase in the VMS of the base steel block, exceeding its yield limit. In addition, a reduction in the height of the WC anvil would lessen the VMS during the synthesis process, and the VMS of the base steel block will also decrease. A reduction in the height of the WC anvil will decrease the pretightening force on the WC anvil, thereby reducing its lateral support effect. When the interference fit was increased from 0.6 to 0.8mm and the steel ring angle was changed from 1.5° to 1.1°, the pretightening force on the low WC anvil was similar to the pretightening force on the original WC anvil. Our work provides valuable insights for effectively reducing the volume of the WC anvil.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.