Abstract

Let T f Tf be a maximal CalderĂłn-Zygmund singular integral, M f Mf the Hardy-Littlewood maximal function, and w w an A ∞ {A_\infty } weight. We replace the “good λ \lambda ” inequality \[ w ( { x : T f ( x ) > 2 λ and M f ( x ) ≀ Δ λ } ) ≀ C ( Δ ) w ( { x : T f ( x ) > λ } ) w\left ( {\{ x:\,Tf(x) > 2\lambda \,{\text {and}}\,Mf(x) \leq \varepsilon \lambda \} } \right ) \leq C(\varepsilon )w\left ( {\{ x:\,Tf(x) > \lambda \} } \right ) \] by the rearrangement inequality \[ ( T f ) w ∗ ( t ) ≀ C ( M f ) w ∗ ( t / 2 ) + ( T f ) w ∗ ( 2 t ) (Tf)_w^ \ast (t) \leq C(Mf)_w^ \ast (t/2) + (Tf)_w^ \ast (2t) \] and show that it gives better estimates for T f Tf . In particular, we obtain best possible weighted L p {L^p} bounds, previously unknown exponential integrability estimates, and simplified derivations of known unweighted estimates for ( T f ) ∗ {(Tf)^ \ast } .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.