Abstract

BackgroundSparganium (Typhaceae) is a widespread temperate genus of ecologically important aquatic plants. Previous reconstructions of the phylogenetic relationships among Sparganium species are incompletely resolved partly because they were based on molecular markers comprising < 7,000 bp. Here, we sequenced and assembled the complete chloroplast genomes from 19 Sparganium samples representing 15 putative species and three putative subspecies in order to explore chloroplast genome evolution in this genus, clarify taxonomic lineages, estimate the divergence times of Sparganium species, and reconstruct aspects of the biogeographic history of the genus.ResultsThe 19 chloroplast genomes shared a conserved genome structure, gene content, and gene order. Our phylogenomic analysis presented a well-resolved phylogeny with robust support for most clades. Non-monophyly was revealed in three species: S. erectum, S. eurycarpum, and S. stoloniferum. Divergence time estimates suggest that the two subgenera of Sparganium split from each other ca. 30.67 Ma in the middle Oligocene. The subgenus Xanthosparganium diversified in the late Oligocene and Miocene, while the subgenus Sparganium diversified in the late Pliocene and Pleistocene. Ancestral area reconstruction suggested that the two subgenera may have originated in East Eurasia and North America.ConclusionThe non-monophyletic nature of three putative species underscores the necessity of taxonomic revision for Sparganium: S. stoloniferum subsp. choui may be more appropriately identified as S. choui, and subspecies of S. erectum may be in fact distinct species. The estimated diversification times of the two subgenera correspond to their species and nucleotide diversities. The likely ancestral area for most of subgenus Xanthosparganium was East Eurasia and North America from where it dispersed into West Eurasia and Australia. Most of subgenus Sparganium likely originated in North America and then dispersed into Eurasia. Our study demonstrates some of the ways in which complete chloroplast genome sequences can provide new insights into the evolution, phylogeny, and biogeography of the genus Sparganium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call