Abstract

Real-time highway traffic monitoring systems play a vital role in road traffic management, planning, and preventing frequent traffic jams, traffic rule violations, and fatal road accidents. These systems rely entirely on online traffic flow info estimated from time-dependent vehicle trajectories. Vehicle trajectories are extracted from vehicle detection and tracking data obtained by processing road-side camera images. General-purpose object detectors including Yolo, SSD, EfficientNet have been utilized extensively for real-time object detection task, but, in principle, Yolo is preferred because it provides a high frame per second (FPS) performance and robust object localization functionality. However, this algorithm’s average vehicle classification accuracy is below 57%, which is insufficient for traffic flow monitoring. This study proposes improving the vehicle classification accuracy of Yolo, and developing a novel bounding box (Bbox)-based vehicle tracking algorithm. For this purpose, a new vehicle dataset is prepared by annotating 7216 images with 123831 object patterns collected from highway videos. Nine machine learning-based classifiers and a CNN-based classifier were selected. Next, the classifiers were trained via the dataset. One out of ten classifiers with the highest accuracy was selected to combine to Yolo. This way, the classification accuracy of the Yolo-based vehicle detector was increased from 57% to 95.45%. Vehicle detector 1 (Yolo) and vehicle detector 2 (Yolo + best classifier), and the Kalman filter-based tracking as vehicle tracker 1 and the Bbox-based tracking as vehicle tracker 2 were applied to the categorical/total vehicle counting tasks on 4 highway videos. The vehicle counting results show that the vehicle counting accuracy of the developed approach (vehicle detector 2 + vehicle tracker 2) was improved by 13.25% and this method performed better than the other 3 vehicle counting systems implemented in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.