Abstract

A two-staged traffic control scheme, in which sets of candidate paths are prepared off-line prior to overall motion planning process, has been widely adopted for motion planning of mobile robots, but relatively little attention has been given to the application of the two-staged scheme to multiple automated guided vehicle systems (MAGVSs). In the paper, a systematic two-staged traffic control scheme is presented to obtain collision-free minimum-time motions of AGVs along loopless paths. The overall structure of the controller is divided into two tandem modules of off-line routing table generator (RTG) and an online traffic controller (OTC). First, an induced network model is established considering the configurational restrictions of guide-paths. With this model and a modified k-shortest path algorithm, RTG finds sets of k candidate paths from each station nodes to all the other station nodes off-line and stores them in the form of routing tables. Each time a dispatch command for an AGV is issued, OTC utilizes these routing tables to generate a collision-free minimum-time motion along a loopless path. Real-time computation is guaranteed in that the time-consuming graph searching process is executed off-line by RTG, and OTC looks for the minimum time motion among the k candidate paths. The traffic control scheme proposed is suitable for practical application in centralized MAGVS with zone blocking technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.