Abstract

In this article we present a real-time path-planning algorithm that can be used to generate optimal and feasible paths for any kind of unmanned vehicle (UV). The proposed algorithm is based on the use of a simplified particle vehicle (PV) model, which includes the basic dynamics and constraints of the UV, and an iterated non-linear model predictive control (NMPC) technique that computes the optimal velocity vector (magnitude and orientation angles) that allows the PV to move toward desired targets. The computed paths are guaranteed to be feasible for any UV because: i) the PV is configured with similar characteristics (dynamics and physical constraints) as the UV, and ii) the feasibility of the optimization problem is guaranteed by the use of the iterated NMPC algorithm. As demonstration of the capabilities of the proposed path-planning algorithm, we explore several simulation examples in different scenarios. We consider the existence of static and dynamic obstacles and a follower condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.