Abstract
Because of the uncertainties present in geology and construction processes, construction projects in underground cavern groups are typically characterized by high degrees of uncertainty. The real-time safety analysis of underground caverns during construction has been a key technological issue because previous three-dimensional simulations have commonly failed to consider the time-varying changes in construction schedules and geological conditions. Thus, this study couples a construction progress simulation with a real-time dynamic analysis of engineering safety. In this study, a real-time online safety analysis approach based on four-dimensional technology during the construction of underground caverns is introduced, and a dynamic visualization management system of safety information in underground caverns during construction is developed using the OpenGL (Open Graphics Library) Tao Framework and C#, with which integrated management of information related to safety, including geological information, construction progress information, monitoring information, and numerical simulation data, is considered. This study also demonstrates that real-time safety evaluation based on a construction safety information model during the construction of underground caverns is feasible and practical, as shown in a real example in China.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Construction Engineering and Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.