Abstract

On low-friction surfaces, vehicle stability is significantly influenced by nonlinear vehicle dynamics. To realize stability improvement, a real-time nonlinear model predictive control (NMPC) strategy that combines torque vectoring control (TVC) and rear-wheel steering (RWS) is proposed. A multitarget optimization objective function that considers system state tracking, stability, control constraints, and actuation energy consumption is established. Then, a fast-solving algorithm based on Pontryagin’s minimum principle (PMP) is proposed to reduce the heavy computational burden of NMPC and satisfy the real-time computation requirement of vehicular applications. The effectiveness of the proposed fast-solving algorithm is verified by comparing its closed-loop performance with interior point optimization (IPOPT). A series of hardware-in-the-loop (HIL) experiments with the real human driver is conducted to verify the effectiveness of the proposed fast-solving algorithm and combined control strategy. Furthermore, the HIL results show that the proposed combined control strategy can improve a vehicle’s handling stability on a low-friction surface and has a better performance and lower actuation energy consumption than the TVC-only method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call