Abstract

In this paper, an efficient real-time autonomous driving motion planner with trajectory optimization is proposed. The planner first discretizes the plan space and searches for the best trajectory based on a set of cost functions. Then an iterative optimization is applied to both the path and speed of the resultant trajectory. The post-optimization is of low computational complexity and is able to converge to a higher-quality solution within a few iterations. Compared with the planner without optimization, this framework can reduce the planning time by 52% and improve the trajectory quality. The proposed motion planner is implemented and tested both in simulation and on a real autonomous vehicle in three different scenarios. Experiments show that the planner outputs high-quality trajectories and performs intelligent driving behaviors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.