Abstract

Straight lines, or G01 blocks, are the most widespread representation form for the tool path in CNC machining. At the junctions between consecutive segments, the tangency and curvature discontinuities may lead to feedrate fluctuation and acceleration oscillation, which would deteriorate the machining efficiency and quality. To solve this problem, a real-time path-smoothing method is proposed, which adopts a curvature-continuous B-spline with five control points to blend the adjacent straight lines. The advantage of the transition scheme is that, G2 continuity, analytical calculation of the curvature extrema, approximation error control and real-time performance are considered simultaneously. Then, a bidirectional scanning algorithm for jerk limited S-shape feedrate profile is proposed to evaluate the feedrate constraints. On this basis, a real-time look-ahead scheme, which comprises of path-smoothing, bidirectional scanning and feedrate scheduling, is developed to acquire a feedrate profile with smooth acceleration. Also, an arc-length based interpolation algorithm for mixed linear and parametric segments is proposed to overcome the difficulty of crossing different segments. With these schemes, the smoothness of both tool path and feedrate is guaranteed. Simulation and experiments on an X–Y–Z platform are conducted. The results demonstrate the feasibility and efficiency of the present algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.