Abstract

Abstract A real-time hurricane wind forecast model is developed by 1) incorporating an asymmetric effect into the Holland hurricane wind model; 2) using the National Oceanic and Atmospheric Administration (NOAA)/National Hurricane Center’s (NHC) hurricane forecast guidance for prognostic modeling; and 3) assimilating the National Data Buoy Center (NDBC) real-time buoy data into the model’s initial wind field. The method is validated using all 2003 and 2004 Atlantic and Gulf of Mexico hurricanes. The results show that 6- and 12-h forecast winds using the asymmetric hurricane wind model are statistically more accurate than using a symmetric wind model. Detailed case studies were conducted for four historical hurricanes, namely, Floyd (1999), Gordon (2000), Lily (2002), and Isabel (2003). Although the asymmetric model performed generally better than the symmetric model, the improvement in hurricane wind forecasts produced by the asymmetric model varied significantly for different storms. In some cases, optimizing the symmetric model using observations available at initial time and forecast mean radius of maximum wind can produce comparable wind accuracy measured in terms of rms error of wind speed. However, in order to describe the asymmetric structure of hurricane winds, an asymmetric model is needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.