Abstract

The quasi-zero stiffness(QZS) nonlinear isolators have been paid much attention in recent literatures due to their excellent vibration isolation performance under low frequency excitation compared to traditional linear vibration isolators. However, passive QZS isolators are the most widely studied and they are incapable of dealing with varying conditions such as changing the excitation frequency or load in operating state. To promote the adaptability of QZS isolators, a novel approach to achieve real-time controllable QZS is proposed in this paper. An electromagnetic negative stiffness unit comprised of two electromagnet with MR elastomer is employed to produce negative stiffness, and the stiffness characteristic of the system can be accurately controlled by adjusting the driving current according to the displacement information in real time. Theoretical calculation and finite element analysis is conducted to establish the exact model of electromagnetic force followed by the general design of the system. Then a customized driver is developed for electromagnetic negative stiffness unit, and the dynamic model of the isolator is set up to study the effect of relative parameters on the transmissibility. Finally, a series of experiments are performed to evaluate the real-time controllable QZS characteristic and confirm the vibration isolation effect of the proposed electromagnetic QZS isolator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.