Abstract

This paper presents an automatic inspection approach for Printed Circuit Boards (PCBs) with accurate determination of the fault location and identification of the fault type. This approach depends on several digital image processing techniques including registration, filtering, foreground segmentation, mathematical morphological operations, subtraction, feature extraction, and component matching. The Speeded Up Robust Feature extraction (SURF) technique is used for two purposes: registration of the PCB to be checked to a reference PCB and detection of feature points of each missing component on the PCB that is localized from the subtraction process from the reference PCB. Operation is performed on the hue component of the color PCB images. A dictionary is first built for all possible components on the available PCBs with SURF feature descriptors, and hence if a missing item is detected on a PCB during the inspection process, the SURF feature descriptors for features extracted from the difference between the tested and reference PCBs at the position of the lost component are matched with those in the built dictionary or database. A distance metric is used in the matching process. The importance of the proposed approach lies in its ability to build a dictionary of feature descriptors for all possible components in a diversity of PCBs and its ability to localize and identify the missing components regardless of the PCB position, rotation, or type. All operations are formulated in a Graphical User Interface (GUI) using MATLAB environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call