Abstract

We give a realizability interpretation of an intuitionistic version of Church's Simple Theory of Types (CST) which can be viewed as a formalization of intuitionistic higher-order logic. Although definable in CST we include operators for monotone induction and coinduction and provide simple realizers for them. Realizers are formally represented in an untyped lambda–calculus with pairing and case-construct. The purpose of this interpretation is to provide a foundation for the extraction of verified programs from formal proofs as an alternative to type-theoretic systems. The advantages of our approach are that (a) induction and coinduction are not restricted to the strictly positive case, (b) abstract mathematical structures and results may be imported, (c) the formalization is technically simpler than in other systems, for example, regarding the definition of realizability, which is a simple syntactical substitution, and the treatment of nested and simultaneous (co)inductive definitions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.