Abstract

In this paper, we consider the problem of completely flying over an area just hit by an earthquake with a fleet of Unmanned Aerial Vehicles (UAVs) to opportunely direct rescue teams. The cooperation between UAVs ensures that the search for possible survivors can be faster and more effective than the solutions currently implemented by civil protection. To study this scenario, we introduce the Cover by Multitrips with Priorities (CMP) problem, which tries to keep into account all the main real-life issues connected to the flight and coordination of the UAVs. We conduct a theoretical study to estimate the best number of UAVs and additional batteries, to give indications to the organization that leads the rescue teams to be able to guarantee rapid and effective rescue. Finally, based on some theoretical considerations, we propose some heuristics that tackle the problem of flying over the whole area with a fleet of UAVs in the shortest possible time. Simulations show that they work efficiently in both the proposed scenarios and provide better performance than previous solutions once they are arranged to work in our scenarios. The main advantages of our approach w.r.t. the current drone-based solutions used by the civil defense are that UAVs do not need drivers so the time of all available rescue workers can be invested in doing something else. In our model, we take into account that some sites (<i>e.g.</i> buildings with a high fire risk or schools and hospitals) have a higher priority and must be inspected first, and the possibility that UAVs can make a decision based on what they detect. Finally, our approach allows UAVs to collaborate so that the same sites will be flown over exactly once in order to speed up the rescue mission.

Highlights

  • In case of natural disasters, such as earthquakes, rescue teams must complete their operations within a few hours of the event to avoid increased loss of life

  • This paper addresses the problem of completely flying over an area just hit by an earthquake with a fleet of Unmanned Aerial Vehicles (UAVs) to opportunely direct rescue teams

  • This algorithm, together with the fact that presumed and effective cycles coincide in the first scenario, guarantees that, in a number of iterations logarithmic in n, we have the exact value of q allowing us to get a solution in which all UAVs fly for a single cycle

Read more

Summary

INTRODUCTION

In case of natural disasters, such as earthquakes, rescue teams must complete their operations within a few hours of the event to avoid increased loss of life. Researchers strongly believe that, as we have already seen for artificial intelligence and robotic systems in many fields, UAVs will gain the trust of common people and lawmakers This is the reason why, with recent advances in UAV technologies, many papers have been published proposing different theoretical models for handling many algorithmic optimization problems related to UAV rescue operations.

THE PROBLEM
PEFORMANCE METRICS
A MIXED-INTEGER LINEAR PROGRAMMING FORMULATION
CHANGING VS RECHARGING BATTERIES
NUMBER OF UA
HEURISTICS
TOP BASED ALGORITHM ATOP
Findings
VIII. CONCLUSION AND OPEN PROBLEMS
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call