Abstract
Hippocampal Place Cells (PCs) are pyramidal neurons showing spatially localized firing when an animal gets into a specific area within an environment. Because of their obvious and clear relation with specific cognitive functions, Place Cells operations and modulations are intensely studied experimentally. However, although a lot of data have been gathered since their discovery, the cellular processes that interplay to turn a hippocampal pyramidal neuron into a Place Cell are still not completely understood. Here, we used a morphologically and biophysically detailed computational model of a CA1 pyramidal neuron to show how, and under which conditions, it can turn into a neuron coding for a specific cue location, through the self-organization of its synaptic inputs in response to external signals targeting different dendritic layers. Our results show that the model is consistent with experimental findings demonstrating PCs stability within the same spatial context over different trajectories, environment rotations, and place field remapping to adapt to changes in the environment. To date, this is the only biophysically and morphologically accurate cellular model of PCs formation, which can be directly used in physiologically accurate microcircuits and large-scale model networks to study cognitive functions and dysfunctions at cellular level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.