Abstract

Visual tracking algorithm based on deep learning is one of the state-of-the-art tracking approaches. However, its computational cost is high. To reduce the computational burden, in this paper, A real-time tracking approach is proposed by using three modules: a single hidden layer neural network based on sparse autoencoder, a feature selection for simplifying the network and an online process based on extreme learning machine. Our experimental results have demonstrated that the proposed algorithm has good performance of robust and real-time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.