Abstract

Fatigue failure is a typical failure mode of welded structures. It is of great engineering significance to predict the remaining fatigue life of structures after a certain period of service. In this paper, a two-stage hybrid deep learning approach is proposed only using the response of structures under fatigue loading to predict the remaining fatigue life. In the first stage, a combination of convolutional neural network (CNN), squeeze-and-excitation (SE) block, and long short-term memory (LSTM) network is employed to calculate health indicator values based on the current measured data sequence. In the second stage, a particle filtering-based algorithm is utilized to predict the remaining fatigue life using the previously calculated health indicators. Experimental results on different welded specimens under the same loading conditions demonstrate that the hybrid deep learning approach achieves superior prediction accuracy and generalization ability compared to CNN, LSTM, or CNN-LSTM models in the first stage. Moreover, the average relative deviation between the predicted and actual fatigue life is less than 6% during the final quarter of the crack propagation and fracture stage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.