Abstract
We have successfully demonstrated that the quartz crystal microbalance with dissipation monitoring (QCM-D) can be used to monitor real-time damage to genomic mammalian DNA adsorbed to a polyelectrolyte surface. To reveal the capabilities of this technique, we exposed DNA surfaces to quercetin, an agent that has been implicated in causing DNA strand breaks in a Cu(II)-dependent fashion in vitro. We show that the QCM-D frequency and dissipation patterns that result from exposure of the DNA surfaces to quercetin-Cu(II) are consistent with the induction of DNA strand scission. We use QCM-D to furthermore demonstrate that this process is dependent on Cu(II) and that the DNA damage induced by quercetin can still be detected if Cu(II) is in situ with the DNA surface and not in solution phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.